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Statement of the Problem  

The objective of this DURIP award is to construct a broadband impedance microscope 

(BIM) for frequency-dependent nanoscale imaging on complex quantum materials. Thanks to the 

ARO-DURIP support, we have acquired a capacitance/loss bridge (up to 20 kHz), an impedance 

analyzer (up to 50 MHz), a vector network analyzer (up to 43.5 GHz), and other peripheral 

electronics. Together with the existing scanning platforms and specialized cantilever probes [1] 

in the PI’s lab, the BIM can now simultaneously obtain microscopic (10 – 100 nm) and quasi-

spectroscopic (over 7 decades in frequency) information with unprecedented precisions. This 

novel experimental system will yield tremendous knowledge as we work toward building future 

acoustic, electronic, and optic devices for Defense applications. 

Because of the cooperative interactions and competing orders, electronic inhomogeneity in 

the mesoscopic (nanometer to micrometer) length scale is widely observed in oxides and other 

complex systems [2-4]. Compared with single atoms or molecules, the collective motion of 

mesoscopic domains or domain walls is relatively slow, with characteristic frequencies ranging 

from quasi-static to the microwave regime. As seen in Fig. 1, macroscopic dielectric 

spectroscopy experiments have been done on various bulk materials, showing the typical 

dielectric relaxation and resonant behaviors [5-7]. Little is known, however, on the microscopic 

details of these processes. 

 

Fig. 1. Frequency-dependent dielectric function in various materials. (a) Real () and imaginary 

() components of ferroelectric BaTiO3 from 100 MHz to 100 GHz. A strong relaxation peak is 

observed in  around 3 GHz [5]. (b) Imaginary part of the relative dielectric susceptibility ( = 

) of doped incipient ferroelectric Sr0.98Mn0.02TiO3 between 28 K and 48 K [6]. (c)  of 

DyMnO3 from zero field to B = 5 T, showing a strong relaxation peak at ~1 MHz [7]. 

Before our work, it was technically difficult to obtain nanoscale electrical properties for a 

broad range of frequencies. As one goes from a typical bulk sample with 1 mm in size to a 

modest spatial resolution of 0.1 m, the volume being probed drops by a factor of 1012, and so 

does the measured signal. In addition, high-frequency measurements are notoriously susceptible 

to artifacts due to stray field contribution. The shielded cantilever probes [1] developed by the PI 

proves to be crucial for any meaningful effort. With this ARO-DURIP grant, the PI’s group was 

able to purchase several state-of-the-art electronics, each covering 3 ~ 4 decades of frequency for 

best sensitivity and stability, to take on this challenge task. 
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Fig. 2. Sensitivity limit in terms of 

changes in the tip capacitance of the 

broadband impedance microscope 

(BIM). The three instruments (from 

left to right), capacitance/loss bridge 

AH2700A, high-f lock-in amplifier 

HF2LI, and PNA microwave 

network analyzer N5244A, can cover 

the broad frequency spectrum 

between 1 kHz and 10 GHz for the 

impedance detection. 

Summary of Key Results 

The configuration of the BIM is detailed as follows. A summary of the frequency-

dependent sensitivity of the microscope is shown in Fig. 2. An instrumentation paper is currently 

in preparation to describe the BIM. 

 

a. For the low-frequency or quasi-static range, we purchased the capacitance/loss bridge 

AH2700A from Andeen-Hagerling Inc., which offers continuous frequency operation 

from 50 Hz to 20 kHz, with the best sensitivity of ~ 1 aF achieved at 1 kHz. This is, 

however, only achieved with a very long averaging time that is not compatible with 

scanning probe experiments. We have confirmed that, in practice, the sensitivity is 

close to 10 aF with an integration time of ~ 20 ms.  

b. For frequencies up to 50 MHz, we acquired the HF2LI lock-in amplifier with the 

multiple-frequency option and reconfigured it with other peripheral components into a 

sensitive impedance detector. With careful impedance match to the cantilever probe, 

we have demonstrated a capacitance detection limit below 10 aF with the normal 

scanning rate (about 20 min per frame). Note that the commercial Precision Impedance 

Analyzers, e.g., Keysight 4294A, only guarantee a detection limit on the order of 100 

aF, which is clearly inferior to our design. 

c. For frequencies up to 20 GHz, we procured the N5244A PNA Microwave Network 

Analyzer from Keysight Technologies Inc. Using similar impedance-match schemes 

and peripheral circuits, we again showed that a capacitance change as small as 1 – 10 

aF can be readily detected with 1 kHz bandwidth. Note that while the electronics during 

our preliminary testing only went up to ~ 10 GHz, the analyzer can potentially reach 

43.5 GHz for reflectivity measurements. 

The implementation of the BIM has found immediate applications in complex systems. 

Many ferroelectric materials, which are widely used in communication systems and electrically 

controlled devices such as varactors and phase shifters, exhibit a strong dielectric dispersion in 

the microwave regime [8]. While the response is commonly attributed to the translational 

vibrations of domain walls [9], there have not been any microscopic studies down to the single 

domain wall level.  
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Fig. 3. Preliminary BIM 

data on YMnO3. The real 

(BIM-Re) and imaginary 

(BIM-Im) output channels 

of the BIM images are 

displayed here with the 

same false-color scale. The 

cloverleaf patterns of the 

domain wall structures are 

observed, indicative of the 

strong ac conductivity of 

the walls. All scale bars are 

1 m. 

Fig. 3 shows our preliminary BIM data on the z-cut surface of the improper ferroelectric 

hexagonal manganite YMnO3. In order to minimize the electrostatic energy, ferroelectric and 

structural antiphase boundaries are mutually interlocked, with six domain walls merging into a 

single vortex core and displaying a beautiful cloverleaf pattern [10]. Previous conductive atomic-

force microscopy (C-AFM) work has shown that the dc conductivity of the domain walls in 

YMnO3 is very low (<< 1 S/m) [11]. Surprisingly, clear domain wall contrast was observed for a 

broad frequency range from 1 MHz to 10 GHz. Using finite-element analysis tools [12], we can 

further quantify the ac conductivity of the domain walls to be 102 – 103 S/m, which is 5 ~ 6 

orders of magnitude higher than that the dc value. While the underlying physics is not fully 

understood, the BIM experiment clearly reveals a highly nontrivial dynamic response of the 

coupled walls to the oscillating electric fields. A manuscript is currently in preparation to report 

this exciting discovery in a high-impact journal. 

 

To summarize, thanks to the DURIP support, the PI’s group has acquired the necessary 

electronics to perform nanoscale impedance imaging over a broad electromagnetic spectrum. The 

sensitivity of the instrument is characterized to be better than 10 aF over 7 orders of magnitude 

(103 to 1010 Hz) in frequency. Our preliminary BIM data on ferroelectric materials revealed 

highly nontrivial electromagnetic responses of the domain walls. We expect that this unique tool 

will make substantial contributions to the vibrant field of condensed matter physics. The research 

to be conducted in the near future based on the BIM is well aligned with the ARO mission to 

understand emergent phenomena in strongly correlated systems and information in non-

equilibrium nanosystems. 
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